The instability of vacua in Gauss-Bonnet gravity
نویسندگان
چکیده
Owing to the quadratic nature of the theory, Einstein-Gauss-Bonnet gravity generically permits two distinct vacuum solutions. One solution (the ”Einstein” vacuum) has a well defined limit as the Gauss-Bonnet coupling goes to zero, whereas the other solution (the ”stringy” vacuum) does not. There has been some debate regarding the stability of these vacua, most recently from Deser & Tekin who have argued that the corresponding black hole solutions have positive mass and as such both vacua are stable. Whilst the statement about the mass is correct, we argue that the stringy vacuum is still perturbatively unstable. Simply put, the stringy vacuum suffers from a ghost-like instability that is not excited by the spherically symmetric black hole, but would be excited by any source likely to emit gravitational waves, such as a binary system. This result is reliable except in the strongly coupled regime close to the Chern-Simons limit, when the two vacua are almost degenerate. In this regime, we study instanton transitions between branches via bubble nucleation, and calculate the nucleation probability. This demonstrates that there is large mixing between the vacua, so that neither of them can accurately describe the true quantum vacuum. We also present a new gravitational instanton describing black hole pair production in de Sitter space on the Einstein branch, which is preferred to the usual Nariai instantons and is not present in pure Einstein gravity.
منابع مشابه
Energy in Generic Higher Curvature Gravity Theories
We define and compute the energy of higher curvature gravity theories in arbitrary dimensions. Generically, these theories admit constant curvature vacua (even in the absence of an explicit cosmological constant), and asymptotically constant curvature solutions with non-trivial energy properties. For concreteness, we study quadratic curvature models in detail. Among them, the one whose action i...
متن کامل/ 03 11 26 7 v 1 2 7 N ov 2 00 3 Gauss - Bonnet gravity renders negative tension branewolds unstable
We show that the Gauss-Bonnet correction to Einstein gravity induces a gravitational tachyon mode, namely an unstable spin 2 fluctuation, in the Randall-Sundrum I model. We demonstrate that this instability is generically related to the presence of a negative tension brane in the set-up, with or without Z2-symmetry across it. Indeed it is shown that the tachyon mode is a bound state localised o...
متن کاملسیاهچالههای نظریه گوس- بونه در حضور شاره کامل
In this paper, the solutions of the Gauss-Bonnet theory of gravity was proposed in the presence of a perfect fluid with thermodynamic pressure P and energy gravity ρ in n-dimension. Accordingly, perfect fluid tensor was regarded as energy-momentum tensor and the static and radiating solutions for the linear equation of state p = wρ was calculated. This solution contains all the solutions alread...
متن کاملPhase space of modified Gauss–Bonnet gravity
We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within thes...
متن کاملNUT-Charged Black Holes in Gauss-Bonnet Gravity
We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r = N , there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α goes to zero. Fur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008